Gödel contra Hilbert.
En 1930, después de años de disputas intelectuales, se organizó un congreso matemático en la ciudad de Königsberg (hoy Kaliningrado, en Rusia), ciudad natal de Hilbert. En las discusiones de clausura, un joven matemático austríaco se armó de valor y levantó la mano para intervenir. Ante la mirada expectante de aquellos grandes sabios, Kurt Gödel (28 de abril de 1906 – 14 de enero de 1978) hizo una afirmación demoledora: estaba a punto de completar una demostración que ponía fin a la discusión, ya que probaba formalmente que ningún sistema podría ser a las vez consistente, recursivo y completo, es decir, el programa de Hilbert era imposible de concluir.
Comentaris