John Forbes Nash i la Teoria de jocs.
Es una pena que a Nash se le esté recordando como el “protagonista” de una película y no como el genio detrás del desarrollo de la Teoría de juegos. A John Forbes Nash le gustaban los juegos, de hecho se le tiene como uno de los dos inventores independientes del juego de mesa que hoy se llama Hex, pero que en Princeton era conocido como “Nash”. Nash buscaba el juego perfecto para los matemáticos. Pero no, cuando los matemáticos hablamos de Teoría de juegos no nos referimos al Hex, ni al Candy Crush, ni a la brisca, estamos hablando fundamentalmente del estudio de las decisiones de los individuos, no de pasarnos vidas.
En Teoría de juegos se analizan situaciones complejas en las que hay más de un individuo que quiere tener éxito pero que tiene que tener en cuenta las decisiones del resto de los intervinientes. Esto es, no vale con preguntarte qué es lo que tienes que hacer tú, sino que tienes que preguntarte qué es lo que tienes que hacer tú teniendo en cuenta lo que piensas que van a hacer los demás. Veamos un ejemplo: te han detenido junto a un compinche, habéis hecho cosas terribles que no voy a contar aquí, pero la policía no tiene pruebas y solo os acusan de algo menor (sí, voy a contar el dilema del prisionero, los que lo conozcan pueden saltarse este párrafo). Pongamos que si no os delatáis el uno al otro vais a pasar tres años de chabolo. Si los dos cantáis (y os delatáis el uno al otro) os caerán 5 años a cada uno. Si canta uno solo, le caerán 12 años al otro y uno al cantor por “colaborar”... Os colocan en habitaciones separadas, claro, esto se pone interesante. Eres una persona inteligente, tu compañero es como tú -no te asocias con cualquiera- ¿qué crees que pasará?
Tú | |||
No delatar | Delatar | ||
Tu compinche | No delatar | 3 años para cada uno | 12 para él, uno para ti |
Delatar | 12 para ti y uno para él | 5 para cada uno |
Llegados a este punto surgen las preguntas, ¿eres egoísta? ¿lo es tu compañero? Para poder proseguir tenemos que suponer algo al respecto, pongamos que los dos lo sois, sois completamente egoístas. Lo mejor sería que no os delataseis ¿no? Pues no, ¿no hemos dicho que sois los dos egoístas? Lo mejor para ti es que el otro no te delate y tú sí a él. Tu sabes que él piensa lo mismo, no querrás ser tú el que se pase 12 años a la sombra mientras él sale en un año ¿no?
La teoría existente antes de las aportaciones de Nash nos haría esperar el Óptimo de Pareto, esto es, ambos os calláis. Las teorías de Pareto nos llevarían a pensar que la mejor solución es que los dos cooperéis. Lo que aportó la “mente maravillosa” de Nash es que tú -conociendo al igual que tu tu socio las ideas de Nash- pienses “si creo que mi compinche no me va a delatar, lo mejor es delatarle, y si creo que me va a delatar, también es mejor para mi delatarle”. Lo que desde entonces se llama alcanzar un equilibrio de Nash: hay una estrategia dominante, debemos esperar que los dos cantéis, que los dos os delatéis, porque es lo único que podéis hacer que garantiza que estáis mejorando vuestras opciones.
Este dilema del prisionero es un ejemplo de juego en el que ambos jugadores pierden, esto es uno de los juegos de suma no nula. Otros matemáticos, como John Von Neumann (sí, el del proyecto Manhattan), ya habían estudiado el equilibrio en los juegos de suma cero (en el que los otros jugadores ganan lo que un jugador pierde). Pero Nash en su tesis doctoral de 1951 describió las situaciones en juegos en los que todos pueden perder. ¿Por qué es tan importante el equilibrio de Nash? Pues porque esta situación en la que hay mutua desconfianza es una situación muy corriente en economía, por eso se firman contratos que comprometen a las partes que suelen ser -como tú y tu compinche- bastante egoístas. Las implicaciones que tuvo el trabajo de Nash le valieron el premio Nobel de Economía en 1994. Sí, de Economía, porque de matemáticas no hay, seguramente porque al inventor de la dinamita no le gustaban las matemáticas.
La teoría de juegos proporciona modelos para entender este tipo de situaciones que se presentan -además de en famosos dilemas- en gestión, economía, psicología… o en partidas de póker, y que involucran por tanto las decisiones de todos los agentes y no solo las de uno. Para poder explicar estas situaciones se utilizan matrices o árboles de decisión.
Pero hoy no es un día de suma cero, hoy todos perdemos.
José Ángel Murcia, Nash muere, todos perdemos: ¿Qué es la teoría de juegos?, verne. El País, 24/05/2015
Comentaris